• Earn real money by being active: Hello Guest, earn real money by simply being active on the forum — post quality content, get reactions, and help the community. Once you reach the minimum credit amount, you’ll be able to withdraw your balance directly. Learn how it works.

Backend Representation Learning for Natural Language Processing

dEEpEst

☣☣ In The Depths ☣☣
Staff member
Administrator
Super Moderator
Hacker
Specter
Crawler
Shadow
Joined
Mar 29, 2018
Messages
13,861
Solutions
4
Reputation
27
Reaction score
45,546
Points
1,813
Credits
55,350
‎7 Years of Service‎
 
56%

61WoaH6Il1L._SL1246_.jpg

Representation Learning for Natural Language Processing​

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions.


The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate andgraduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

More info
This link is hidden for visitors. Please Log in or register now.
Download


 
Back
Top